Distinct large-scale turbulent-laminar states in transitional pipe flow.
نویسندگان
چکیده
When fluid flows through a channel, pipe, or duct, there are two basic forms of motion: smooth laminar motion and complex turbulent motion. The discontinuous transition between these states is a fundamental problem that has been studied for more than 100 yr. What has received far less attention is the large-scale nature of the turbulent flows near transition once they are established. We have carried out extensive numerical computations in pipes of variable lengths up to 125 diameters to investigate the nature of transitional turbulence in pipe flow. We show the existence of three fundamentally different turbulent states separated by two distinct Reynolds numbers. Below Re (1) approximately equal 2,300, turbulence takes the form of familiar equilibrium (or longtime transient) puffs that are spatially localized and keep their size independent of pipe length. At Re (1) the flow makes a striking transition to a spatio-temporally intermittent flow that fills the pipe. Irregular alternation of turbulent and laminar regions is inherent and does not result from random disturbances. The fraction of turbulence increases with Re until Re (2) approximately equal 2,600 where there is a continuous transition to a state of uniform turbulence along the pipe. We relate these observations to directed percolation and argue that Re (1) marks the onset of infinite-lifetime turbulence.
منابع مشابه
Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملOn scaling pipe flows with sinusoidal transversely corrugated walls: analysis of data from the laminar to the low-Reynolds-number turbulent regime
Direct numerical simulation was used to study laminar and turbulent flows in circular pipes with smoothly corrugated walls. The corrugation wavelength was kept constant at 0.419D, where D is the mean diameter of the wavy-wall pipe and the corrugation height was varied from zero to 0.08D. Flow rates were varied in steps between low values that generate laminar flow and higher values where the fl...
متن کاملTransition to turbulence in a concentric annular pipe
In this study the pressure-drop, mean and rms axial velocity data are measured using a differential pressure transducer and a laser Doppler anemometer for the flow of Newtonian and non-Newtonian fluids in a concentric annular pipe (radius ratio =0.5) at various Reynolds numbers encompassing the laminar, transitional and turbulent regimes. Three different fluids are utilized; a semi-rigid shear-...
متن کاملMicroscopic particle image velocimetry measurements of transition to turbulence in microscale capillaries
The character of transitional capillary flow is investigated using pressure-drop measurements and instantaneous velocity fields acquired by microscopic PIV in the streamwise–wall-normal plane of a 536 lm capillary over the Reynolds-number range 1,800 £ Re £ 3,400 in increments of 100. The pressure-drop measurements reveal a deviation from laminar behavior at Re = 1,900 with the differences betw...
متن کاملHeat Transfer in the Transitional Flow Regime
Transitional flow, whereby the motion of a fluid changes from laminar to turbulent flow, was successfully identified by Reynolds (1883) almost 130 years ago. According to ASHRAE (2009), for a round pipe, in general, laminar flow exists when the Reynolds number is less than 2 300. Fully turbulent flow exists when the Reynolds number is larger than 10 000 and transitional flow exists for Reynolds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 18 شماره
صفحات -
تاریخ انتشار 2010